How to compose figures

At least one...

Katie Galloway



Purpose of figure?

1.Provide context, scale, frame the story
2.Convey complex ideas
3.Summarize data

Engraving of the moon from Galileo's Sidereus
Nuncius (111, 53-96) 1610.



Purpose of figure?
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Figure 2 Identify the message and title of your figure first
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One figure needs one (and only one) message

1.0btain data

2.Analyze data

3.Decide on the most important message
4.Build a figure that supports your message
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Source: Broad Comm Kit Figure Design



https://mitcommlab.mit.edu/broad/commkit/figure-design/

What are the key elements of a figure?

1.Graphics (See Tutorial 4)
2.Data

3.Legend



Do not trust the defaults!
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Ten Simple Rules for Better Figures



https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003833

Do not trust the defaults!
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Do not trust the defaults!

Table 2.1 | Bad Example of a Data Table. Table 2.2 | Good Example of a Data Table.
Trial Temp (F) Flow (gpm) Temperature Flow Trial

1 60 2.00 CF) (gpm)

2 90| 27.3421 28 3-8‘13 ;

3| so] s 0 fo2 4

: 70 10.30 8

6 60 2.009 80 18.11 5

7 90 26.99 90 27 34 2

8 70 10.30 90 26.99 7

Courtesy of Paul Dauenhauer from
Spring_2020_ChEn_3401W_ReportGuidelines_ver 02



Layout...

Organize panels into “Figure layout sketch”, exemplary for Figure planning table in A

Layout in rows

Layout in columns

Panel A: Photo, Box Plot

Panel B: Photo, Box plot

Panel C: Micrograph, Biomarker 1
control +
treatment

control

model +
treatment
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Panel C’: Micrograph, Biomarker 2
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Panel A: Photo,
Box plot

Panel B: Photo,
Box plot

Panel C: Micrograph

Biomarker 1
control model

treatment

Biomarker
control model

treatment

Source: Creating Clear and Informative Image-based Figures for Scientific Publications



https://www.biorxiv.org/content/10.1101/2020.10.08.327718v1.full.pdf
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Scale and color...

Source: A Brief Guide to Desighing Effective Figures for the Scientific Paper



https://onlinelibrary.wiley.com/doi/full/10.1002/adma.201102518

You can tell just by looking at figures...
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Using Engineered Scaffold Interactions to Reshape MAP Kinase Pathway Signaling Dynamics



https://science.sciencemag.org/content/319/5869/1539.figures-only

Consistent use of color
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https://science.sciencemag.org/content/319/5869/1539.figures-only

Cell Systems

The Design Principles of Biochemical Timers:
Circuits that Discriminate between Transient and

Sustained Stimulation

Graphical Abstract

Temporal Filtering
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Jaline Gerardin, Nishith R. Reddy,
Wendell A. Lim

Correspondence
wendell.lim@ucsf.edu

In Brief

Timing is critical in biological regulation.
In many cellular processes, biochemical
networks can measure the duration of
signaling inputs to coordinate the relative
timing of cellular responses. To define
biochemical circuits capable of this
temporal filtering, we comprehensively
searched the space of three-node
biochemical networks. We identified five
classes of core network motifs capable of
temporal filtering with distinct functional
properties and mechanisms. These core
network motifs provide insight into how
cells can interpret dynamic information
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You can tell just by looking at figures...
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This is extremely important data...
But alone this graph raises a lot of questions:

Why do | care what an HHC is?

Is it a rare type of pokémon?
Where can | find this creature?
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Best practice: Graphic of primary data (J) to
match with processed data (M)

Oh there it s, it’s that population in the top-left quad!
But, still how do we identify it? Is that a cell?

4 dpi

Control-Puro
J.  6FDDRR
: - --r > 40 -

2 : i ’ n 30 i e e e 5 -
~— | 4 4 2] A
£ - 2 20 :
= -
£ S 10+ .
-
L ® s 0 .g' .ilﬁl

NAa = o ©® T T

10 “ iy Control- 6F  6FDDRR
1 T T
102 10 3 Puro

CFSE intensity (AU)



Diagraming complex processes is essential
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By adding in a graphic the
reader can understand

what process was used to
identify the cells as HHCs.



Without a descriptive legend, this is still
nonsense to most readers
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Figure legend. (I) Schematic of CFSE-EU assay
for measuring transcription and proliferation
rates in converting cells via flow cytometry at 4
dpi. Transcription rates measured through 5-
ethynyl uridine (EU) incorporation during 1 hr
incubation with 1mM EU followed by “click”
reaction with fluorescent dye to visualize EU
incorporation. CFSE assay performed as
described previously.

(J) Representative dot plot of CFSE intensity and
fluorescently labeled-EU for Control-Puro (grey), 6F
(green), and 6FDDRR (red). Histograms of CFSE and EU
intensity adjacent to dot plot. Quadrant to demark
hypertranscribing, hyperproliferating cells (HHCs) set by
reference to 6F condition. Hyperproliferating and slow
cycling cells set by selecting CFSE value in 6F condition
to allow the dimmest 15%. High EU values set by top half
of 6F condition, resulting in ~7% HHCs in 6F.

(M) Percentage of HHCs for Control-Puro, 6F, and
6FDDRR condition as assayed. n = 11-16
independent conversion per condition. Median +/-
interquartile range. Kruskal-Wallis Test.



Summary of what a figure needs
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1. A single message:
HHCs increase with DDRR

2. Diagrams of experimental context
In cells? Flow? Time scale?

3. Most primary form of data
Flow plots

4. Processed data
%HHCs, statistical analyses

5. A legend describing WHAT is in the figure.
Just the what (not results themselves!
That is for the main text).
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vary by cell populations
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Identifying optimal locus, insulator, and promoter combinations for stable transgene expression

hiPSCs transgenic hiPSCs neurons identify loci + regulatory elements
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AIM 1. LOCUS IDENTIFICATION + CHARACTERIZATION

AIM 2. INSULATOR + STRUCTURAL ELEMENTS SCREENING

AIM 3. PROMOTER IDENTIFICATION + CHARACTERIZATION

Figure 1. Developing a robust framework for genomic engineering in models of mammalian development. Human induced pluripotential
stem cells (hiPSCs) are infected using libraries of lentiviruses bearing the green fluorescent protein (GFP) to generate transgenic hiPSCs.
Libraries of integrating lentiviruses are composed with varying promoters, insulators, and structural elements. To ensure single locus integration,
cells are infected at low multiplicity of infection and sorted by reporter activity (e.g. GFP-positive). GFP-positive transgenic hiPSCs are
differentiated into neurons and cardiomyocytes. Loci and regulatory elements including promoters, insulators, and structural elements that
maintain transgene activity are identified by sequencing GFP-positive differentiated cells. Following identification of loci and regulatory elements,
optimal combinations for each cell-type will be verified through differentiation of iPSCs engineered via targeted CRISPR-based integration of

candidate regulatory element combinations at identified loci.



Identifying optimal locus, insulator, and promoter combinations for stable transgene expression
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Figure 1. Developing a robust framework for genomic engineering in models of mammalian development. Human induced pluripotential
stem cells (hiPSCs) are infected using libraries of lentiviruses bearing the green fluorescent protein (GFP) to generate transgenic hiPSCs.
Libraries of integrating lentiviruses are composed with varying promoters, insulators, and structural elements. To ensure single locus integration,
cells are infected at low multiplicity of infection and sorted by reporter activity (e.g. GFP-positive). GFP-positive transgenic hiPSCs are
differentiated into neurons and cardiomyocytes. Loci and regulatory elements including promoters, insulators, and structural elements that
maintain transgene activity are identified by sequencing GFP-positive differentiated cells. Following identification of loci and regulatory elements,
optimal combinations for each cell-type will be verified through differentiation of iPSCs engineered via targeted CRISPR-based integration of

candidate regulatory element combinations at identified loci.



GapR-seq maps positive supercoling
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GapR-seq maps positive supercoiling
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Figure 1. A. RNAP induces DNA supercoils as mRNA is transcribed. GapR protein binds to positively supercoiled DNA
(sc(+)) enabling GapR-seq to map supercoiling across genes. B. As predicted by models of supercoiling-mediated
gene regulation, convergently oriented genes display reduced expression when both genes are active. Divergently

oriented genes show amplification.
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