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What do you mean, review a paper?

Reviewing a paper!

« Step one: identify a paper worth reviewing by reading!

Are we there

* “Reviewing” is a more involved engagement with a paper yet?
* |t typically involves: gleading the
« Situating the paper in the broader field
. Co_n_te_xt_uallzmg for yom: audience Reading the
 Criticizing and evaluating the work whole paper
« Concisely telling their story
e : . Section and
« Specifics depend on the type of review you are doing figure titles

Introduction &
Discussion

Abstract and
Title




The Piled Higher & Deeper
Paper Review Worksheet

| |
Some types of review Sors, v, pops oy
advisor? Just add up the points using
this helpful grade sheet to determine
your recommendation.

No reading necessary!

| Paper title uses witty pun,
- colgn or begins wittrtny %n
- (+10 pt)

. Paper has pretty graphics
| ang/or 3D ;?Iottst){’fgmppt)

. Paper has lots of equations

“News and Journal club Paper peer | (+10 pt) (add +5 if they look |
- 2 . ke gibberishtoyou) |
Views review . Author is a labmate (+10 pt)
Added context +++ ++ +, as needed | Pt (Sag U thesis com- |
, P | Paper is on same topicas
Con_text General J_ournal Research group  Specific field | your thesis (:30 pt) ©
audience readership " Paper cites your work (+20 pt) |
_ e e e
Evaluation + ++ T+t j1900py 1
' TOTAL

' Points Recommendation

<0 Recommend, but write
scathing review that'll take
them months to rebuff. '

' 0-120 Recommend, but insist
your work be cited more
prominently.

>120 Recommended and _
deserving of an award |

JORGE CHAM © 2005 www.phdcomics.com



A suggested recipe for journal club

1. Read the paper, including looking at the S
2. Write a summary, including highlights/limitations/etc.

3. From the discussion and intro sections, identify needed extra context to
understand the problem/solution (engineering) or observation/hypothesis
(science)

4. Decide how to group figures together to tell the story

5. While thinking through the story, identify limitations and alternative
hypotheses



An example

ACS . :
SyntheticBiology
pubs.acs.org/synthbio

Conditional Recruitment to a DNA-Bound CRISPR—Cas Complex
Using a Colocalization-Dependent Protein Switch

Robin L. Kirkpatrick, Kieran Lewis, Robert A. Langan, Marc J. Lajoie, Scott E. Boyken,
Madeleine Eakman, David Baker, and Jesse G. Zalatan™

Cite This: ACS Synth. Biol. 2020, 9, 2316-2323 Read Online




Start with the summary

 Orient the audience to key points: What did the paper do, and why should we
care?

e Can use various frameworks, such as:
« Highlights - Limitations — Relevance

« Summary — Weaknesses — Open Questions

« Can organize as an outline for the presentation



CRISPR-Cas + Co-LOCKR induces gene

activation with reduced background

 Highlights: Colocalization of two CRISPR-Cas
complexes opens the Co-LOCKR switch and DNA-triaaered Co-LOCKR switch
allows for binding of an activation domain,
triggering expression of a reporter gene. This

system decreases off-target effects of effectors =
activated by DNA binding.

 Limitations: Low fold-change activation,

requires two DNA target sites spaced
appropriately apart, and contains many
components

* Relevance: Could be used to decrease background for epigenetic modifiers, improve
formation of long-range DNA loops, or implement AND logic



Provide relevant context

* Motivation: What problem are the authors trying to solve? Or, what question are
they trying to answer?
« Beginning the presentation with background on the engineering challenge or scientific
question can help convey to the audience why the technology/findings are interesting
* Previous work: What prior research does the paper use or build on?
 Citations in the paper can provide sources for relevant info and graphics (e.g., overview of
a system, details on key molecules/pathways)
« Similar/competing work: Have others employed alternative approaches to the
same problem/question? How is this work different?

« Can also include explanations of important techniques/technologies,
depending on audience background



Off-target effects can occur when

unbound effector proteins are functional

 Effector proteins that act when bound to DNA can have nonspecific effects

* e.g., off-target epigenetic modification, high background imaging signal

« Goal: engineer a DNA-triggered effector protein with reduced off-target
effects

 Solution: effector activity is dependent on co-localization of two CRISPR-Cas
complexes via Co-LOCKR switch
» Engineer Co-LOCKR affinity such that colocalization is required to open the switch

« Off-target colocalization is very rare, so nonspecific effector activation should be minimal



CRISPR-Cas complexes provide DNA

specificity

« dCas9: catalytically inactive CRISPR effector protein, binds to DNA location
specified by guide RNA

» sCRNA: scaffold guide RNA, CRISPR guide RNA with 3’ hairpins that recruit
RNA binding proteins

dCas9
scRNA

protein hairpins




Co-LOCKR switch allows activator

binding upon colocalization

Co-LOCKR: colocalization-dependent latching orthogonal cage-key

» de novo designed alpha-helical protein switch

No activation in solution Colocalization-dependent

Lajoie MJ*, Boyken SE*, Salter Al*, et al. Science 369 (2020).

Asymmetrized packing




Co-LOCKR switch allows activator

binding upon colocalization

Co-LOCKR: colocalization-dependent latching orthogonal cage-key

 KEY binds CAGE and displaces LATCH, LOCKR switch
permitting Bcl2 to bind LATCH

LATCH

w1}
(Betz)

KEY; CAGE



Co-LOCKR switch allows activator

binding upon colocalization

Co-LOCKR: colocalization-dependent latching orthogonal cage-key

 KEY binds CAGE and displaces LATCH, Closed complex
permitting Bcl2 to bind LATCH

« CAGE and KEY are fused to different
RNA binding proteins that bind to scRNA,
exposing LATCH only upon CRISPR
colocalization




Co-LOCKR switch allows activator

binding upon colocalization

Co-LOCKR: colocalization-dependent latching orthogonal cage-key

 KEY binds CAGE and displaces LATCH, Colocalized open complex
permitting Bcl2 to bind LATCH

« CAGE and KEY are fused to different
RNA binding proteins that bind to scRNA,
exposing LATCH only upon CRISPR
colocalization

* Bcl2 is fused to VP64 (transcriptional
activator) and binds to LATCH, activating
target gene expression




Tell the story

* Think about how to group the figures into logical parts
» Often, subsection headings and major claims are a good place to start

« Usually in the order presented in the paper, but sometimes not

» Decide what info/figures from the Sl are important (if any)

» Can always make extra slides in case questions come up

* Determine whether any new graphics are necessary

* e.g., redraw or reorganize confusing diagrams, add animations or annotations to existing
figures



Claims: Section headings

‘- Colocalization on genomic DNA can activate a Co-LOCKR switch (Fig. 2, S1, S2)

* Direct protein fusions to orthogonal CRISPR-Cas complexes can activate a Co-
LOCKR switch (Fig. S3)

» Switch activation is sensitive to the distance between the CRISPR-Cas
complexes (Fig. 3, S4)

» Optimization of the Com-cage RNA-mediated Co-LOCKR switch (Fig. 4, 5; T. S2)

Main demonstration of function + background calculation
Module optimization
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Colocalization on genomic DNA can

activate a Co-LOCKR switch
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Colocalization on genomic DNA can

activate a Co-LOCKR switch
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Assessment of background fluorescence

reveals colocalization-dependence

Colocalization-dependent activation Background activity
(colocalization-independent cage opening)

Qﬁ%}%@ 3 [ gﬁ@ R

KEY binds CAGE binds
free cage free key




Assessment of background fluorescence

reveals colocalization-dependence

IF transcriptional activation from adjacent gRNA target sites is additive:
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Assessment of background fluorescence

reveals colocalization-dependence

Colocalization-dependent activation
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Colocalization on genomic DNA can

activate a Co-LOCKR switch

fluorescence (a.u.)
= ()] (o]
o o (=
(=} o o
o o o

N
o
(=}
o

MCP-CAGE

Com-CAGE

Recruit:
B cage + key
key only

[J cage only

B parent
~ bkgd (#+0-m)

/ 2x PP7 scRNA \
recruits KEY-PCP

S 2 KEYS
-

WKPCP dimer

‘ 11 1

-

=

-

27,

sz MS2 A .
. SCRNA MCP dimer

2x PP7
K scRNA /
2x MS2 scRNA 1x com scRNA \

recruits MCP-CAGE recruits Com-CAGE

CAG ;;E
Q 1x com
SscRNA /

CAGES
-
-
= OR
-

=

In S. cerevisiae (yeast) strains with

integrated proteins and plasmid scRNA



Module optimization

* RNA recruitment
* RNA hairpin-RNA binding protein (RBP) pairs
* Number of RNA hairpins on scRNA
 Direct fusion versus RNA recruitment of key and cage

 Linker length between RBP and key — no effect
 Target site spacing
» Expression level of RBP-key and Bcl2-VP64 proteins

« Cage-key interaction strength



Alternative topologies reveal best

combination of RNA hairpins and RBPs
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Alternative topologies reveal best

combination of RNA hairpins and RBPs
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Module optimization

* RNA recruitment
« RNA hairpin-RNA binding protein (RBP) pairs
« Number of RNA hairpins on scRNA
 Direct fusion versus RNA recruitment of key and cage
 Linker length between RBP and key — no effect
 Target site spacing
» Expression level of RBP-key and Bcl2-VP64 proteins

« Cage-key interaction strength



Switch activation is sensitive to target

site spacing
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Module optimization

* RNA recruitment
« RNA hairpin-RNA binding protein (RBP) pairs
« Number of RNA hairpins on scRNA
 Direct fusion versus RNA recruitment of key and cage
 Linker length between RBP and key — no effect
 Target site spacing
» Expression level of RBP-key and Bcl2-VP64 proteins

« Cage-key interaction strength



Expression level of KEY and activator

affects module function

A High KEY expression

:

3 KEY§ CAGE
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v v

increased background (cage only) weak activation

Optimal expression levels : Low KEY expression




Expression level of KEY and activator

affects module function
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Module optimization

* RNA recruitment
« RNA hairpin-RNA binding protein (RBP) pairs
« Number of RNA hairpins on scRNA
 Direct fusion versus RNA recruitment of key and cage
 Linker length between RBP and key — no effect
 Target site spacing
» Expression level of RBP-key and Bcl2-VP64 proteins

« Cage-key interaction strength



Tuning the length of the KEY peptide

reduces background activation
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Finish the story

» Evaluate the work
 Are there experiments that are missing?
* Do the strength of the claims match the strength of the data?

» Are there alternative interpretations/explanations of the results?

 Consider limitations

» Where does the solution/explanation fall short?

* Mention potential next steps / future work

* Finally, connect this work to your (lab’s) research, if relevant
« What implications do these findings have for your work?

» Can these systems/technologies be used by the lab?



Advantages, limitations, and future work

» Colocalization-dependence means that proteins can be moderately
expressed while maintaining low background activation

 Limitations:
» Relatively low fold-change activation (~2x)
» Requires two DNA target sites spaced appropriately apart

» Contains many components (dCas9, two scRNAs, cage, key, and activator)

» Further optimization: tune cage-latch affinity, tune protein expression levels



Advantages, limitations, and future work

* Implementation in mammalian systems?

« System could be adapted to use other DNA-binding domains (e.g., Co-LOCKR
+ zinc fingers)

» Potential applications:
» Split protein epigenetic modifiers
« Engineering long-range DNA loops
« AND-gate logic



Tips and tricks

« Can download high-quality images/figures online (rather than screenshotting)

» Be sure to cite any graphics/info you use from papers other than the one you’re
reviewing

« Common format: First author(s), et al. Journal Issue#, (Year).

« Graphics, figures, added annotations, and animations are very helpful!



