

WWW. PHDCOMICS. COM

How to review a paper

UROP Training Kasey Love Adapted from Christopher Johnstone

What do you mean, review a paper?

- Step one: identify a paper worth reviewing by reading!
- "Reviewing" is a more involved engagement with a paper
- It typically involves:
 - Situating the paper in the broader field
 - Contextualizing for your audience
 - Criticizing and evaluating the work
 - Concisely telling their story
- Specifics depend on the type of review you are doing

Some types of review

The Piled Higher & Deeper Paper Review Worksheet

Stuck reviewing papers for your advisor? Just add up the points using this helpful grade sheet to determine your recommendation.

No reading necessary!

	Paper title uses witty pun, colon or begins with "On" (+10 pt)				
	Paper h and/or 3	as pretty graphics 3D plots (+10 pt)			
	Paper has lots of equations (+10 pt) (add +5 if they look like gibberish to you)				
	Author is a labmate (+10 pt)				
	Author is on your thesis com- mittee (+60 pt)				
	Paper is on same topic as your thesis (-30 pt)				
	Paper cites your work (+20 pt)				
	Paper scooped your results (-1000 pt)				
_	TOTAL				
	Points	Recommendation			
	< 0	Recommend, but write scathing review that'll tak them months to rebuff.	e		
	0-120	0-120 Recommend, but insist your work be cited more prominently.			
	>120	Recommended and			

	"News and Views"	Journal club	Paper peer review
Added context	+++	++	+, as needed
Context audience	General journal readership	Research group	Specific field
Evaluation	+	++	++++

deserving of an award

A suggested recipe for journal club

- 1. **Read** the paper, including looking at the SI
- 2. Write a **summary**, including highlights/limitations/etc.
- 3. From the discussion and intro sections, identify needed **extra context** to understand the problem/solution (engineering) or observation/hypothesis (science)
- 4. Decide how to group figures together to tell the story
- 5. While thinking through the story, **identify limitations** and alternative hypotheses

pubs.acs.org/synthbio

Research Article

Conditional Recruitment to a DNA-Bound CRISPR—Cas Complex Using a Colocalization-Dependent Protein Switch

Robin L. Kirkpatrick, Kieran Lewis, Robert A. Langan, Marc J. Lajoie, Scott E. Boyken, Madeleine Eakman, David Baker, and Jesse G. Zalatan*

Cite This: ACS Synth. Biol. 2020, 9, 2316–2323

Start with the summary

- Orient the audience to key points: What did the paper do, and why should we care?
- Can use various frameworks, such as:
 - Highlights Limitations Relevance
 - Summary Weaknesses Open Questions
- Can organize as an outline for the presentation

CRISPR-Cas + Co-LOCKR induces gene activation with reduced background

- Highlights: Colocalization of two CRISPR-Cas complexes opens the Co-LOCKR switch and allows for binding of an activation domain, triggering expression of a reporter gene. This system decreases off-target effects of effectors activated by DNA binding.
- Limitations: Low fold-change activation, requires two DNA target sites spaced appropriately apart, and contains many components

• Relevance: Could be used to decrease background for epigenetic modifiers, improve formation of long-range DNA loops, or implement AND logic

Provide relevant context

- Motivation: What problem are the authors trying to solve? Or, what question are they trying to answer?
 - Beginning the presentation with background on the engineering challenge or scientific question can help convey to the audience **why** the technology/findings are interesting
- Previous work: What prior research does the paper use or build on?
 - Citations in the paper can provide sources for relevant info and graphics (e.g., overview of a system, details on key molecules/pathways)
- Similar/competing work: Have others employed alternative approaches to the same problem/question? How is this work different?
- Can also include explanations of important techniques/technologies, depending on audience background

Off-target effects can occur when unbound effector proteins are functional

- Effector proteins that act when bound to DNA can have nonspecific effects
 - e.g., off-target epigenetic modification, high background imaging signal
- Goal: engineer a DNA-triggered effector protein with reduced off-target effects
- Solution: effector activity is dependent on co-localization of two CRISPR-Cas complexes via Co-LOCKR switch
 - Engineer Co-LOCKR affinity such that colocalization is required to open the switch
 - Off-target colocalization is very rare, so nonspecific effector activation should be minimal

CRISPR-Cas complexes provide DNA specificity

- dCas9: catalytically inactive CRISPR effector protein, binds to DNA location specified by guide RNA
- scRNA: scaffold guide RNA, CRISPR guide RNA with 3' hairpins that recruit RNA binding proteins

Co-LOCKR switch allows activator binding upon colocalization

Co-LOCKR: colocalization-dependent latching orthogonal cage-key

• *de novo* designed alpha-helical protein switch

No activation in solution

Colocalization-dependent

Lajoie MJ^{*}, Boyken SE^{*}, Salter Al^{*}, et al. Science **369** (2020).

Asymmetrized network

Co-LOCKR switch allows activator binding upon colocalization

Co-LOCKR: colocalization-dependent latching orthogonal cage-key

• KEY binds CAGE and displaces LATCH, permitting Bcl2 to bind LATCH

Co-LOCKR switch allows activator binding upon colocalization

Co-LOCKR: colocalization-dependent latching orthogonal cage-key

- KEY binds CAGE and displaces LATCH, permitting Bcl2 to bind LATCH
- CAGE and KEY are fused to different RNA binding proteins that bind to scRNA, exposing LATCH only upon CRISPR colocalization

Co-LOCKR switch allows activator binding upon colocalization

Co-LOCKR: colocalization-dependent latching orthogonal cage-key

- KEY binds CAGE and displaces LATCH, permitting Bcl2 to bind LATCH
- CAGE and KEY are fused to different RNA binding proteins that bind to scRNA, exposing LATCH only upon CRISPR colocalization
- Bcl2 is fused to VP64 (transcriptional activator) and binds to LATCH, activating target gene expression

Colocalized open complex

Tell the story

- Think about how to group the figures into logical parts
 - Often, subsection headings and major claims are a good place to start
 - Usually in the order presented in the paper, but sometimes not
- Decide what info/figures from the SI are important (if any)
 - Can always make extra slides in case questions come up
- Determine whether any new graphics are necessary
 - e.g., redraw or reorganize confusing diagrams, add animations or annotations to existing figures

Claims: Section headings

- Colocalization on genomic DNA can activate a Co-LOCKR switch (Fig. 2, S1, S2)
- Direct protein fusions to orthogonal CRISPR-Cas complexes can activate a Co-LOCKR switch (Fig. S3)
- Switch activation is sensitive to the distance between the CRISPR-Cas complexes (Fig. 3, S4)
- Optimization of the Com-cage RNA-mediated Co-LOCKR switch (Fig. 4, 5; T. S2)

Main demonstration of function + background calculation Module optimization

Colocalization on genomic DNA can activate a Co-LOCKR switch

integrated proteins and plasmid scRNA

Colocalization on genomic DNA can activate a Co-LOCKR switch

integrated proteins and plasmid scRNA

Assessment of background fluorescence reveals colocalization-dependence

Colocalization-dependent activation

Background activity

(colocalization-independent cage opening)

Assessment of background fluorescence reveals colocalization-dependence

Assessment of background fluorescence reveals colocalization-dependence

free key

free cage

Colocalization on genomic DNA can activate a Co-LOCKR switch

integrated proteins and plasmid scRNA

Module optimization

- RNA recruitment
 - RNA hairpin-RNA binding protein (RBP) pairs
 - Number of RNA hairpins on scRNA
 - Direct fusion versus RNA recruitment of key and cage
 - Linker length between RBP and key no effect
- Target site spacing
- Expression level of RBP-key and Bcl2-VP64 proteins
- Cage-key interaction strength

Alternative topologies reveal best combination of RNA hairpins and RBPs

Alternative topologies reveal best combination of RNA hairpins and RBPs

Module optimization

- RNA recruitment
 - RNA hairpin-RNA binding protein (RBP) pairs
 - Number of RNA hairpins on scRNA
 - Direct fusion versus RNA recruitment of key and cage
 - Linker length between RBP and key *no effect*
- Target site spacing
- Expression level of RBP-key and Bcl2-VP64 proteins
- Cage-key interaction strength

Switch activation is sensitive to target site spacing

Half-turn difference leads to loss of function

 \rightarrow Periodicity is important

Module optimization

- RNA recruitment
 - RNA hairpin-RNA binding protein (RBP) pairs
 - Number of RNA hairpins on scRNA
 - Direct fusion versus RNA recruitment of key and cage
 - Linker length between RBP and key *no effect*
- Target site spacing
- Expression level of RBP-key and Bcl2-VP64 proteins
- Cage-key interaction strength

Expression level of KEY and activator affects module function

Α High **KEY** expression **VP64** Bcl2 Venus CAGE binds free **KEY** increased background (cage only)

colocalization-dependent activation

Expression level of KEY and activator affects module function

Module optimization

- RNA recruitment
 - RNA hairpin-RNA binding protein (RBP) pairs
 - Number of RNA hairpins on scRNA
 - Direct fusion versus RNA recruitment of key and cage
 - Linker length between RBP and key no effect
- Target site spacing
- Expression level of RBP-key and Bcl2-VP64 proteins
- Cage-key interaction strength

Tuning the length of the KEY peptide reduces background activation

Finish the story

- Evaluate the work
 - Are there experiments that are missing?
 - Do the strength of the claims match the strength of the data?
 - Are there alternative interpretations/explanations of the results?
- Consider limitations
 - Where does the solution/explanation fall short?
- Mention potential next steps / future work
- Finally, connect this work to your (lab's) research, if relevant
 - What implications do these findings have for your work?
 - Can these systems/technologies be used by the lab?

Advantages, limitations, and future work

- Colocalization-dependence means that proteins can be moderately expressed while maintaining low background activation
- Limitations:
 - Relatively low fold-change activation (~2x)
 - Requires two DNA target sites spaced appropriately apart
 - Contains many components (dCas9, two scRNAs, cage, key, and activator)
- Further optimization: tune cage-latch affinity, tune protein expression levels

Advantages, limitations, and future work

- Implementation in mammalian systems?
- System could be adapted to use other DNA-binding domains (e.g., Co-LOCKR + zinc fingers)
- Potential applications:
 - Split protein epigenetic modifiers
 - Engineering long-range DNA loops
 - AND-gate logic

Tips and tricks

- Can download high-quality images/figures online (rather than screenshotting)
- Be sure to cite any graphics/info you use from papers other than the one you're reviewing
 - Common format: First author(s), et al. Journal Issue#, (Year).
- Graphics, figures, added annotations, and animations are very helpful!